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Abstract
Introduction: Varicella is an acute, highly contagious disease, characterised by generalised vesicular exanthema caused by the initial 
infection with varicella zoster virus (VZV) which usually affects children aged 2 to 8 years. 

Aim: To analyse the changes of varicella incidence in Bulgaria over the period of 1928–2019.

Materials and methods: The time series analysis is based on the official data for varicella incidence (per 100,000) in Bulgaria for 
ninety-two years (1928–2019), obtained from three major sources. We utilized the method to construct a time series model of overall 
incidence (1928–2019) using time series modeller in SPSS v. 25. We followed all three steps of the standard ARIMA methodology to 
establish the model – identification, parameter estimation, and diagnostic checking.

Results: Stochastic scalar time series modelling of the varicella incidence from 1928 to 2019 was performed. The stochastic ARIMA 
(0,1,1) was identified to be the most appropriate model. The decomposition of varicella incidence time series into a stochastic trend 
and a stationary component was reasoned based on the model defined. In addition, we assessed the importance of the long-term and 
immediate effect of one shock. The long-term forecast was also under discussion.

Conclusions: The ARIMA model (0,1,1) in our study is an adequate tool for presenting the varicella incidence trend and is suitable to 
forecast near future disease dynamics with acceptable error tolerance.
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INTRODUCTION

Varicella is an acute, highly contagious disease charac-
terised by generalised vesicular exanthema caused by the 
initial infection with varicella zoster virus (VZV), which 
usually affects children aged 2-8 years.[1] Although the 
infection is usually mild with self-limited evolution, all 
non-immune individuals are at risk of infection and com-

plications. Groups at higher risk for severe complications 
are pregnant women, preterm infants, and immunocom-
promised patients of all ages. In addition, WHO estimates 
that the annual global burden of varicella is approximately 
140 million cases of which 4.2 million with severe compli-
cations and 4200 deaths.[2] The almost universal natural in-
fection, especially in the absence of vaccine prophylaxis[3], 
determines the need for accurate data collection for assess-
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ment of the actual size of the epidemic process. Robust epi-
demiological data is essential for setting the priorities while 
planning the immunization strategies on national level. A 
limited number of industrialised countries have introduced 
varicella vaccination into their childhood immunisation 
programs, which has led to substantial reductions in var-
icella-related incidence and mortality.[2] 

Varicella is not on the list of reportable infectious dis-
eases and subject of registration in the European Union, 
thus the overall burden of disease is not well known and a 
country-level estimate is challenging.[4] 

Bulgaria is among the countries with national mandato-
ry surveillance system covering the total country popula-
tion since 1940[5], but data on incidence dates back to 1928. 
The analysis of the key epidemiological indicators, includ-
ing the prevalence of acute infectious diseases (excluding 
tuberculosis, AIDS and sexually transmitted infections) in 
Bulgaria, reveals that varicella usually takes the first place in 
their distribution. In the last eleven years (2008–2019), the 
proportion ranges from 39.18% (2008 – 22693/57916) with 
an incidence of 297.02 (per 100,000)[6] to 47.73% (2017 – 
25007/52393) with an incidence of 352.12 (per 100,000) [7]. 
The notable exception is 2010, when severe measles out-
break[8] displaced varicella from the first place of acute 
contagious diseases distribution[9]. In Bulgaria, according 
to the current Ordinance for Registration of Infectious Dis-
eases[10], varicella cases are classified as possible, probable, 
and confirmed, predominantly possible.

Ninety-two years of national surveillance of varicella 
incidence as one of the major intensive epidemiological 
indicators enables us to outline the trends and make an epi-
demiological forecast for varicella infection in this country. 
It should be noted that the stochastic modelling of different 
infectious disease parameters, although not often, is still 
available.[11-14]

AIM

In this context, our study is a continuation of the present 
trends for new experimental data accumulation with help 
of the modern achievements of statistics in the study of 
non-stationary time series. 

MATERIALS AND METHODS 

Incidence data collection

The time series analysis is based on official data for vari-
cella incidence (per population of 100,000) in Bulgaria for 
ninety-two years from 1928 to 2019. The information was 
collected from three major sources: The National Center 
for Public Health and Analysis (NCPHA), the National 
Center for Infectious and Parasitic Diseases (NCIPD) and 
data from the chronicles of Bulgarian epidemiology in the 
20th century.[15] 

Statistical analysis

We used the method of time series analysis to construct a 
time series model of overall incidence (1928–2019) using a 
Time Series Modeller in SPSS v. 25. We established autore-
gressive integrated moving average (ARIMA) model for 
prediction.[16] A p-value<0.05 was considered statistically 
significant.

ARIMA model

The ARIMA model was based on the yearly incidence var-
icella rates (per 100,000 population) from 1928 to 2019 in 
Bulgaria. We followed all three steps of the standard ARI-
MA methodology to establish the model: identification, 
parameter estimation, and diagnostic checking. We an-
alysed the graphs for the autocorrelation function (ACF) 
and partial autocorrelation function (PACF) to identify 
the possible values of non-seasonal autoregressive order 
(p), non-seasonal differencing (d), and non-seasonal mov-
ing average order (q). Three test procedures were used to 
determine whether the time series after differencing was 
stationary or not. In the second step, the ARIMA model 
parameters was estimated. In the last step, we diagnosed 
the residual error sequence for white-noise sequence using 
the Ljung-Box Q test. Finally, the SPSS Expert Modeller has 
identified and estimated the best fitting ARIMA.

Preliminary test procedures 

Motivation ground
We visually inspected Fig. 1 and concluded that time series 
of varicella incidence for the period from 1928 to 2019 is 
not stationary. 

Fig. 2 demonstrates the autocorrelation and partial au-
tocorrelation function of this series. The horizontal axis 
presents the phase response, more precisely the lag number 
of autocorrelation function (ACF) from 0 to 25 and partial 
autocorrelation function (PACF) from 1 to 25. The sam-
pling interval is one year. The values of the autocorrelation 
function are displayed on the vertical axis of the top pan-
el, while the values of the partial autocorrelation function 
are displayed on the vertical axis of the lower panel. The 
two horizontal lines, symmetric above and below zero, 
represent the confidence limits assuming the input signal 
is white noise. Fig. 2 demonstrates that autocorrelation 
function fades with slowly increasing delay. Up to the 21st 
year, autocorrelations are above the confidence limit. As for 
the partial autocorrelation function, it has a high isolated 
peak at a delayed unit, then practically subsides below the 
confidence limits. As is well known, such behaviour of the 
lengthwise samples indicates non-stationary series.[17] 

Thus, there is enough evidence for a more in-depth 
analysis of non-stationarity of the surveyed time series. 
Appropriate stochastic modelling, on the other hand, ne-
cessitates a study of the nature of eventual non-stationar-
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Figure 1. Time series of varicella incidence rate for the period of 1928-2019. 

Figure 2. Autocorrelation function (top) and partial autocorrelation function (below) of the varicella incidence.

ity. The contemporary time series analysis elaborates four 
options: trend stationarity, a unit root (a difference sta-
tionary process), structural changes, and long memory. 
While in the trend stationarity, the original series becomes 
stationary after proper linear detrending, in the case of a 
unit root process, this happens after the differentiation of 
the series. Structural changes in an autoregressive model 
are of interest as the time series properties of the model, 
such as stationarity, may be different before and after the 
change.‌[18] Structural changes mean stationarity around a 
linear trend, but with one or several points of structural 
changes in which the trend parameters undergo a jump. 
Long memory processes are positioned between stationari-
ty and unit root. These are time series that become station-
ary after applying the fractional differentiation filter. When 
the differentiation indicator is a number between 0.5 and 1, 
the original series is non-stationary, because its dispersion 
increases over time.

Time series stationarity check

First, we conducted Dickey-Fuller test to test the null hy-
pothesis that a unit root is present in a time series of varicel-
la incidence.[19] The testing methodology follows Pfaff.‌[20] 
The test runs in three steps in its entirety. The procedure 
starts with the regression of differentiated base series on a 
linear trend, on the original series at a delayed one unit, and 
on a final number of endogenous variables. Endogenous 
variables are actually the differentiated base series at a delay 
of 1, 2, etc. They are included to provide non-correlation of 
the regression residues. In our case, two endogenous vari-
ables are sufficient to satisfy the requirement. We tested the 
null hypotheses that the time series of varicella incidence is 
stationary after differentiation. We concluded that the time 
series was stationary after differentiation without trend and 
drift in data-generating process (tau criteria=14.44; p<0.1). 
However, the question remains: whether only one round 
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of differencing is sufficient to obtain stationary time series. 
To investigate this issue, we repeated the already conduct-
ed test procedure, but not with the original, but with the 
differentiated time series. It turns out that the regression 
residuals are uncorrelated even with one endogenous vari-
able. Even in the first step of the procedure, the null hy-
pothesis for post-differentiation stationarity is rejected at 
significance levels below 1%. According to the following 
methodology, this result is sufficient to conclude that the 
one round differentiated time series of varicella incidence 
is stationary.

Although the Dickey-Fuller test proves that the time se-
ries of varicella incidence is stationary after differentiation; 
however, as is well known, this test has a relatively small 
power.[20] Other researchers[21] suggest a different type 
of test procedure where the null hypothesis is stationari-
ty against the alternative stationarity after differentiation. 
Such an approach is consistent with the conservative strat-
egy that it is more natural the hypothesis of interest, in 
this case post-differentiation, to be the alternative. The test 
model assumes that the baseline time series is a superposi-
tion of trend, random walk, and Gaussian noise. The null 
hypothesis states that the dispersion of shocks in random 
walk is zero and therefore the order is trend-stationary. The 
alternative is non-zero dispersion or stationarity after dif-
ferentiation. The options to consider are two: stationarity 
around a linear trend and stationarity to a constant average 
level. The asymptotic distributions of the relevant statistics 
are non-trivial and their percentiles are tabulated by the 
authors.[21] 

The test procedure requires fixed length of the Bartlett 
(triangular) window, used to calculate the one time step er-
ror dispersion. It turns out that the length of this window is 
short (= 3) delays. The results of the test itself are as follows: 
In the case of null hypothesis about stationarity around the 
constant, the value of the corresponding statistics is 2.21 
and this hypothesis can be rejected at a significance level 
of 0.01%. Thus, the stationarity test we conducted rejected 
the null hypotheses of stationarity around the trend with a 
slope or around a constant.

It is possible that a time series will remain stationary 
around a trend with abrupt structural changes. We test-
ed the time series of varicella incidence for this option by 
applying the so-called stationarity test after differentia-
tion.‌[20,22] The null hypothesis is stationarity after differen-
tiation. The alternative is stationarity around a trend with 
one point of structural change. The options are three: the 
first – the jump is only in the trend constant; the second – 
the jump is only in the slope, and the third – the jump is 
in both the constant and the slope. The point of structural 
change itself is not predetermined, but assigned in the test 
procedure, so as to minimally favour the null hypothesis 
of random walk with drift. Test regressions include the al-
ready commented endogenous variables.

The results of this incidence time series test are as fol-
lows: in the case of the alternative for structural change 
only in the trend constant, two endogenous variables are 

sufficient for the non-correlation of the residues. The year 
of the possible structural change is 1985. The value of 
the relevant statistics is 10.65 and the null hypothesis for 
post-differentiation stationarity is rejected at a 1% signif-
icance level. The conclusion is that the hypothesis of sta-
tionarity after differentiation of the time series of varicella 
incidence is rejected against the alternatives for stationarity 
with different types of structural change in the linear trend 
in the first stage of the analysis.

In the end, we will focus on the fourth option of non-sta-
tionarity – time series to be stationary after the filtration 
with fractional differentiation filter. The test procedure[23] is 
similar to the rejection of the null hypothesis in the station-
arity after differentiation tests, e.g. Dickey-Fuller, and at the 
same time resembles the rejection of the null hypothesis 
in the stationary tests, for example the Kwiatkowski-Phil-
lips-Schmidt-Shin test. Herein, we confirmed this assump-
tion. As it was proven, Dickey-Fuller’s test rejected the null 
hypothesis for stationarity after differentiation. Hence, the 
fractional differentiation process seems unlikely compared 
with the likelihood of stationarity after differentiation.

In conclusion, the applied test procedures confirm the 
conclusion that the non-stationarity of varicella incidence 
time series is stationarity after differentiation type. The dif-
ferentiation of the time series leads to stationarity, which 
seems to be not only without a slope, but also without drift.

Stochastic modelling

One-round differentiation of varicella incidence time series 
was sufficient to ensure stationarity. This result suggests 
Box-Jenkins modelling with the appropriate integrated au-
toregressive moving average (ARIMA).[24,25] The procedure 
starts with a preliminary analysis of the differentiated time 
series, its autocorrelation function, and partial autocorrela-
tion function. Fig. 3 presents the differentiated varicella 
incidence time series for 1928-2019 period and the corre-
sponding autocorrelation and partial autocorrelation func-
tions. The maximum lag number for both is 25.

The visual examination of the differentiated time series 
leads to the conclusion that it is stable in terms of variations 
in dispersion over time. Fig. 3 also demonstrates that au-
tocorrelation function and partial autocorrelation function 
have apparent peaks above the lower confidence limit at lag 
1, then subsided within the confidence band. Exceptions 
are single local peaks at lag 8 and lag 21 for autocorrelation 
and lag 21 for partial autocorrelation, which are within the 
limits of significance. These observations lead to the con-
clusion that the appropriate stochastic model is among the 
many of the ARIMA models with a single differentiation, 
the maximum order of the autoregressive polynomial – 
one, the maximum order of the moving average polyno-
mial – also one.

At this stage of the analysis, a question of crucial impor-
tance is how to define the “best fit” among the already out-
lined set of models. To respond to the challenge, we took 
advantage of the opportunity offered by IBM’s Statistical 
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Package for Social Sciences (SPSS). IBM SPSS Forecasting 
Analysis contains a Time Series Module in which Expert 
Modeller automatically identifies and estimates the best fit-
ting ARIMA or exponential smoothing model for one or 
more dependent variable series. Although users can specify 
a custom ARIMA manually, Expert Modeller eliminates a 
great deal of the trial and error associated with doing so. As 
a result of the application of Expert Modeller, the ARIMA 
model (0,1,1) was favoured. The prediction equation for 
ARIMA (0,1,1) model can be written in a number of math-
ematically equivalent forms, one of which is the so-called 
“error correction” form, in which the previous forecast is 
adjusted in the direction of the error it made:

Ŷt = Ŷt-1 + αet-1,

because et-1 = Ŷt-1 − Ŷt-1 by definition, this can be rewritten 
as:

Figure 3. Time series (top), autocorrelation function (middle) and partial autocorrelation function (below) of the differentiated time 
series of varicella incidence.

Ŷt = Yt-1 − (1-α)et-1 = Yt-1 − θ1et-1

The estimation of the coefficients of the selected model 
using the maximum likelihood method results in:

Ŷt = Yt-1 – 0.404et-1

Model diagnostics

Stochastic ARIMA models suggest normal distribution 
and uncorrelated residues with a constant dispersion over 
time. The normal distribution was checked with the Shap-
iro-Wilk test. The value of W-statistics in the Shapiro-Wilk 
test is 0.99 and the corresponding p-value is 0.483. The 
hypothesis of normal distribution is not rejected. The fi-
nal conclusion is that the residues are normally distributed. 
Fig. 4 shows the autocorrelation function of the residues. It 



Modelling of Varicella Incidence (1928-2019)

629Folia Medica I 2022 I Vol. 64 I No. 4

is obvious that they are within the confidence limits, indi-
cating non-correlation. On the bottom panel the p-values 
of the Ljung-Box-Pierce statistics are given. This test takes 
into account the magnitude of autocorrelations not sepa-
rately for each lag, but as a group.[26] The null hypothesis 
is uncorrelated residues and it is not rejected at the values 
obtained – Ljung-Box Q=7.34, p=0.979.

One-step in-sample forecast

Fig. 5 presents the time series of varicella incidence for a 
92-year period and its approximation to the one-step fore-
cast performed by the selected ARIMA model. The black 
curve represents the base case series, and the gray curve 
reflects the approximation, the dashed line sets the upper 
and lower limits of 95% CI. Apparently, the model provides 
a very good approximation to the varicella time course and 
well fits the incidence dynamics. This is one step in-sam-
ple forecast that demonstrates that the model is completely  
acceptable from a formal statistical point of view.

Extended out-of-sample forecast

As a general rule, the long-term forecasts of stationarity af-
ter differentiation processes are prone to failure due to the 

Figure 4. Diagnostics of the ARIMA model (0,1,1) residues.

Figure 5. Time series and its ARIMA model (0,1,1) approximation.

indefinite accumulation of forecast errors over time. Here 
we will demonstrate a relatively extended forecast, but with 
a limited horizon outside the sample. In Fig. 6, the forecast 
is presented by a bold gray continuous line, and the dashed 
curves set the 95% CI limits. Table 1 contains the values of 
the monitored data for the period from 2013 to 2019, the 
forecast values and the upper and lower limits of 95% CI. 
It is noteworthy that the actual incidence rates fall within 
the 95% CI range. Comparing our forecast (Table 1), and in 
particular the incidence rate for 2019 (375.21 per 100,000; 
95% CI 167.43–640.06) with the officially registered one for 
the same year in the country rate (434.19 per 100,000), we 
could assume that the ARIMA (0,1,1) model is accurate and 
provides a good fit for the epidemiological data set of vari-
cella incidence. We could also hypothesize that in the next 
2-3 years we are expecting an increase in varicella incidence.

DISCUSSION

The proper identification procedures we applied indicated 
that ARIMA (0,1,1) model fits best our original time series 
of the annual varicella incidence for the period from 1928 
to 2019. In trend-stationary models, characterised by given 
common properties, the time series returns to the trend, 
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in particular, at stationarity – to the average.[27] The long-
term forecast befits the trend. Unanticipated disturbances, 
commonly called shocks, naturally fade over time. On the 
contrary, if the time series is stationary after differentiation, 
the theory requires distinctly opposite interpretation.[27] 
The time series does not return permanently to the trend or 
average. The dispersion of the prediction error grows over 
time. The shocks have long-lasting effect.

Our model is stationary after differentiation without 
drift. Hence, as long as the observed time series values do 
not tend to zero, the varicella incidence should not be steadi-
ly decreasing. The dispersion growth over time impacts the 
forecast accuracy. The effect of random shocks on incidence 
is long-lasting, but is smaller than the immediate ψ(1)=0.09. 

Varicella incidence for the time period 1928-2019 
demonstrates upward trend with an average of 280.14 (per 
100,000). In the sub-period 1928-1951, the incidence was 
lower (between 40.40 and 65.60 per 100,000) with an av-
erage of 36.20 (per 100,000), most likely related to partial 
registration of the infection and incidence during that pe-
riod. In 1952, the indicator for the first time exceeded 100 
per 100,000 population, and in 1955 it exceeded 200 per 
100,000 population (a rate below which the incidence did 
not fall throughout the overall sub-period from 1955 to 
2019). During the 1955-2019 sub-period, the lowest reg-
istered rate was 230.40 (per 100,000) in 1956 and 1961, 
and the highest rate recorded was 614.29 (per 100,000) in 

Figure 6. Time series and ARIMA model (0,1,1) 10 years ahead forecast. 

Table 1. Time series, forecast, and 95% CI interval for varicella incidence 

Year 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

Observed 528.97 315.28 343.88 453.94 353.12 339.90 434.19

ARIMA (0,1,1)
Forecast 368.32 369.47 370.61 371.76 372.91 374.06 375.21 376.36 377.50 378.65
95% LCL 250.02 230.58 214.47 200.59 188.36 177.39 167.43 158.31 149.91 142.11
95% UCL 502.96 531.49 556.68 579.64 600.96 621.02 640.06 658.26 675.75 692.63

1982. Based on this evidence, the logical assumption is that 
the incidence rate will continue to increase in future de-
cades. In the absence of varicella vaccination as a regular 
component for epidemic process modelling, we observed 
typical epidemics cycles at short intervals of 2-5 years.[2] 
However, using the ARIMA model (0,1,1), the established 
trend demonstrates that the varicella incidence registered 
in Bulgaria increases over a longer interval of time – about 
10 years (Fig. 4), which is also observed in the USA.[28] It 
should be noted that the ten-year peaks in the United States 
data have been observed during a period of immune pro-
phylaxis started in 1995. Accordingly, we could suggest that 
if the varicella vaccine is introduced in our immunisation 
schedule, the epidemic upsurges would be recorded even 
less frequently. Moreover, Bulgaria is one of the only sev-
en countries in the European Union / European Economic 
Area that have no specific recommendations for varicella 
vaccination in the national immunisation programs.[29] 

CONCLUSIONS

Most of the available articles and reports studying varicella 
infection in Bulgaria are descriptive with analyses of rates 
(incidence, mortality, and lethality) and proportions (age 
distribution of the patients, number of hospitalised pa-
tients, etc.) and clinical focus on the severity of illness and 
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complications. To our knowledge, the presented ARIMA 
model is the first in this country to outline the dynamics 
of the epidemic process over a period of ninety-two years. 
Moreover, the established trend provides robust epidemi-
ological forecast to inform health authorities and support 
evidenced based decision-making for the inclusion of var-
icella vaccination into the immunisation schedule of the 
country. The ARIMA model (0,1,1) in our study is an ade-
quate tool for presenting the varicella incidence trend and 
is suitable to forecast near future disease dynamics, with 
acceptable error tolerance.
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Резюме
Введение: Ветряная оспа – острое высококонтагиозное заболевание, характеризующееся генерализованной везикулярной 
экзантемой, вызванной первоначальной инфекцией вирусом ветряной оспы (ВВО), которым обычно страдают дети в возрас-
те от 2 до 8 лет.

Цель: Проанализировать динамику заболеваемости ветряной оспой в Болгарии за период 1928 – 2019 гг.

Материалы и методы: Анализ временных рядов основан на официальных данных о заболеваемости ветряной оспой (на 100 
000 населения) в Болгарии за 92 года (1928 – 2019 гг.), полученных из трёх основных источников. Мы использовали этот метод 
для построения модели временных рядов общей заболеваемости (1928 – 2019 гг.) с использованием модуля моделирования 
временных рядов в SPSS v. 25. Мы выполнили все три шага стандартной методологии ARIMA для создания модели – иденти-
фикация, оценка параметров и диагностика. проверка.

Результаты: Было выполнено стохастическое скалярное моделирование временных рядов заболеваемости ветряной оспой 
с 1928 по 2019 год. Стохастическая ARIMA (0,1,1) была признана наиболее подходящей моделью. Разложение временных 
рядов заболеваемости ветряной оспой на стохастический тренд и стационарную составляющую было обосновано на основе 
определённой модели. Кроме того, мы оценили важность долгосрочного и немедленного эффекта одного шока. Обсуждался 
и долгосрочный прогноз.

Заключение: Модель ARIMA (0,1,1) в нашем исследовании является адекватным инструментом для представления тенден-
ции заболеваемости ветряной оспой и подходит для прогнозирования динамики заболевания в ближайшем будущем с допу-
стимой погрешностью.
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