Serum Levels of Vitamin D in Patients with Multiple Myeloma

Vasko Graklanov1, Veselin Popov2, Ralitsa Raycheva3

1 Department of Clinical Hematology, St George University Hospital, Medical University of Plovdiv, Plovdiv, Bulgaria
2 Department of Radiotherapy, Faculty of Medicine, St George University Hospital, Medical University of Plovdiv, Plovdiv, Bulgaria
3 Department of Social Medicine and Public Health, Faculty of Public Health, Medical University of Plovdiv, Plovdiv, Bulgaria

Corresponding author: Vasko Graklanov, Department of Clinical Hematology, St George University Hospital, Medical University of Plovdiv, 15A Vasil Aprilov Blvd., 4002 Plovdiv, Bulgaria; E-mail: dr.grklanov@yahoo.com; Tel.: +359 895 716 528

Received: 20 Jan 2020 ♦ Accepted: 17 Mar 2020 ♦ Published: 31 Dec 2020

Citation: Graklanov V, Popov V, Raycheva R. Serum levels of vitamin D in patients with multiple myeloma. Folia Med (Plovdiv) 2020;62(4):730-5. doi: 10.3897/folmed.62.e50321.

Abstract

Aim: To investigate the serum levels of vitamin D in newly diagnosed patients with multiple myeloma.

Patients and methods: In this study we measured the serum levels of vitamin D in 37 patients (19 women, 18 men) at a median age of 68 years and a diagnosis of MM according to the International Myeloma Working Group (IMWG) criteria. The immunoassay tests used for the quantification of 25 (OH) – Vitamin D were original ELISA kits Immundiagnostic and the measurement was done before starting the treatment.

Results: Serum levels below the optimum (<30 ng/ml) were recorded in all 37 patients. The median value of vitamin D was 4.3±6.5 mg/ml, the maximum value measured was 24.7 mg/ml, which is below the lower limit of the reference value for deficiency.

Conclusions: In this study, we found extremely low serum vitamin D levels in most of the newly diagnosed MM patients.

Keywords

chemotherapy, multiple myeloma, radiotherapy, vitamin D

INTRODUCTION

Multiple myeloma (MM) is a malignant B-cell neoplasia characterized by a slow proliferation of malignant plasma cells in the bone marrow. MM has an incidence of about 10% of all hematologic malignancies and causes 2% of all deaths from malignancies.1 In vitro studies have shown the effectiveness of vitamin D and its analogues on cell lines from MM patients. In vitro study on NCI-H929 multiple myeloma cell lines with vitamin D3 analogue (EB1089) found that EB1089 inhibit cell growth by inducing cell cycle arrest in G1 phase as a dose-dependent process. In addition, EB1089 was also found to induce cell apoptosis by upregulating the Bcl-2 protein without altering the Bax protein. The fact that the expression of p53, p21, and Bax was not altered by EB1089 indicates that EB1089-induced apoptosis is p53-dependent. Most likely, EB1089 leads to apoptosis by activating the p38 mitogen-activated protein kinase (p38MAP kinase) and suppressing the extracellular signal-regulating kinase (ERK) with subsequent activation and without alteration of the caspase cascade (caspase3).2 Another study found that EB1089 had a synergistic effect with dexamethasone in inducing apoptosis and that IL-6, LIF OSM and anti-gp130MoAb could not prevent the apoptotic effect of this combination. EB1089 also downregulated the gp80 expression on the myeloma cells which led to a decreased production of soluble IL-6Ra.3 The mechanism of action is mediated by binding to the vitamin D re-
ceptor (VDR). VDR has a high affinity for 1,25(OH)2D3.

Data on the significance of the vitamin D polymorphism for the MM origin and also for the MM outcome are divergent. In a study involving 75 patients with MM and a control group of 150 healthy individuals, the significance of 3 VDR gene polymorphisms (Apal, BsmI, and FokI) was examined by PCR-RFLP method. There was no significant association between Apal and BsmI and the risk of MM. However, a significant link between the FokI polymorphism and the risk of developing MM has been demonstrated. A significant correlation between the f genotype variants with creatinine levels, albumin levels and stage III in the Durie & Salmon staging system has also been found. Vitamin D deficiency is a health problem with pandemic proportions. Globally, 1 in 7 people (14%) are believed to have insufficiency or deficiency of vitamin D. Despite the lack of strong consensus on the experimental levels of vitamin D, experts consider the lower limit of 30 ng/mL to be an adequate level of vitamin D (Table 1).

<table>
<thead>
<tr>
<th>25(OH) level (ng/ml)</th>
<th>Laboratory diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td><10</td>
<td>Severe deficiency</td>
</tr>
<tr>
<td><20</td>
<td>Deficiency</td>
</tr>
<tr>
<td>20-30</td>
<td>Insufficiency</td>
</tr>
<tr>
<td>30-100</td>
<td>Normal in sunny countries</td>
</tr>
<tr>
<td>>100</td>
<td>Excess</td>
</tr>
<tr>
<td>>150</td>
<td>Intoxication</td>
</tr>
</tbody>
</table>

The suggested limit of 25(OH)D for optimal skeletal health is that level of 25(OH)D which minimizes PTH to a minimum and maximizes calcium absorption to a maximum. Vitamin D treatment recommendations depend on many factors such as age group, body weight, ethnicity (skin type) as well as latitude of residence. In addition, these recommendations do not apply to people suffering from a particular disease as well as having a vitamin D deficiency. For patients with laboratory confirmed vitamin D deficiency, a serum vitamin D level lower than 20 ng/mL (50 nmol/L) treatment with vitamin D is required. In patients with vitamin D deficiency, the therapeutic dose (dependent on age and body weight) should be given according to available regional or national treatment recommendations, with duration of treatment of 1 to 3 months. There are many studies looking for a link between vitamin D deficiency and its importance as a risk factor for the occurrence of neoplastic diseases, as well as its impact on disease outcome. The aim of the present study was to investigate vitamin D levels in newly diagnosed patients with MM.

<table>
<thead>
<tr>
<th>Patients (n=32)</th>
<th>Gender</th>
<th>Mean age 68 years (38-86)</th>
</tr>
</thead>
<tbody>
<tr>
<td>W</td>
<td>51.4%</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>48.6%</td>
<td></td>
</tr>
<tr>
<td>Clinical stage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IA</td>
<td>10.8%</td>
<td></td>
</tr>
<tr>
<td>IB</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>Durie & Salmon</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IIA</td>
<td>13.5%</td>
<td></td>
</tr>
<tr>
<td>IIB</td>
<td>5.4%</td>
<td></td>
</tr>
<tr>
<td>Clinical stage ISS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>13.5%</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>13.5%</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>70.0%</td>
<td></td>
</tr>
</tbody>
</table>

Statistical analysis

Methods of descriptive statistics and methods of statistical inferences and conclusions were used to conduct the study. Data analysis was carried out using the IBM SPSS, version 25.0 and MS Excel 2017, which allowed rapid and accurate preparation of the results for further analysis. The perceived critical level of significance in testing the null hypothesis H0 is α=0.05 (Z criterion=1.96), with a 95% guarantee probability.

Measurement of vitamin D

Serum tests for vitamin D were run at the first hospitalization of patients before starting treatment. Serum vitamin D levels were measured at the Central Clinical Laboratory at St George University Hospital in Plovdiv. An immunoenzyme method was used to quantify 25 (OH)-vitamin D level, using original ELISA kits Immundiagnostic, Austria, Catalog No. K 2109.
RESULTS

The youngest patient was 38 years old and the oldest patient – 86 years (Fig. 1).

Figure 1. Distribution of patients by age.

No statistically significant difference was found between serum vitamin D levels in men (6.2±5.2 mg/ml) and women (6.7±6.1 mg/ml) (H=0.004, p=0.952). There was also no significant difference in age groups (H=7.9, p=0.094). Only the mean values of the patients in the 69-78-year group (4.1±3.4 mg/ml) were significantly lower than those in the 59-68 age group (9.4±7.2 mg/ml). According to Durie & Salmon staging system, 51.4% of patients were in stage IIIB (n=19) (Fig. 2), and using ISS staging system 73.0% of patients were in stage III (n=27) (Fig. 3). No statistically significant difference was found between the mean values of serum vitamin D levels and the clinical stages of the disease, as determined by the stage system of Durie & Salmon (H=3.46, p=0.484), as well as the ISS staging system (H=2.22, p=0.329).

A complete blood count (CBC) was done in all patients. CBC count was performed with the following results: mean hemoglobin (Hgb) 92.5±19.5 g/l, mean leukocyte count (WBC) 6.6±4.8 G/l, and mean platelet count (PLT) 222.1±118.2 G/l. In all 37 patients with newly diagnosed MM, serum levels of vitamin D below optimal (<30 ng/ml) were detected, 1 patient had vitamin D insufficiency, serum levels between 20-30 ng/ml, while the remaining 36 patients had vitamin D deficiency (vitamin D level below 20 ng/ml). Severe vitamin D deficiency (vitamin D level <10 ng/ml) was reported in 81% of patients. The results are presented in Fig. 4.

Radiological bone changes were found in 64.9% (n=24) of patients, respectively 35.1% (n=13) of patients had a normal radiographic images. From the patients with radiological changes, according to the Merlini scale the bone changes with multiple osteolytic foci and/or pathological fractures (grade 2) were 45.8% (n=11) patients, followed by those with multiple pathological fractures and/or destruction of the skeletal segment (grade 3) 33.3% (n=8). The lowest was the percentage of patients with single osteolytic lesions and/or osteoporosis, 20.8% (Fig. 5). No statistically significant difference was found between vitamin D levels and myeloma bone disease evaluated using Merlini scale.
Also in patients with MM, we did not find any significant association between vitamin D level with hemoglobin level (Spearman’s ρ=0.10, p=0.541), leukocyte count (Spearman’s ρ=0.23, p=0.178) as well as platelet counts (Spearman’s ρ=0.15, p=0.363). There was also no significant association with the ESR level (Spearman’s ρ=0.14, p=0.412), CRP (Spearman’s ρ=-0.05, p=0.781), LDH (Spearman’s ρ=-0.28, p=0.100) and the level at β2mg (Spearman’s ρ=-0.17, p=0.318).

Induction treatment was initiated in all 37 patients, with the highest rates being those receiving CyBorDex therapy (59.5%; n=22). The remaining patients received chemotherapy regimens PAD, CVAD and endoxan/dexamethasone. Radiotherapy was performed in all patients with bone disease and symptomatic fractures. No statistically significant differences were found between the mean vitamin D levels and response to treatment (H=4.9, p=0.177) (Fig. 6).

In another retrospective study involving 83 patients (mean cohort age 66.3 years) with MM diagnosed between December 2007 and December 2014 in deficiency of vitamin D (vitamin D level below 10 ng/ml) was found in 32.5% of patients, 54.1% had insufficient vitamin D level (10-30 ng/ml) and 13.3% of patients had an optimal vitamin D level (above 30 ng/ml). Also, this study found no correlation between the stage of the disease and the level of vitamin D as well as myeloma bone disease. A correlation was found between vitamin D levels and plasma cell percentage. In patients with vitamin D deficiency, the average percentage of plasma cells in the bone marrow was 44.8%, in patients with insufficiency 20.6%, and in patients with the optimal level, the percentage of plasma cells in the bone marrow was on average 13.3%.16 Our study found extremely low serum vitamin D levels in the majority of newly diagnosed patients with MM.

Is vitamin D a potentially modifiable risk and therapeutic factor in MM?

CONCLUSIONS

In this study, we found extremely low serum vitamin D levels in most of the newly diagnosed MM patients.
REFERENCES

Уровни витамина D в сыворотке крови у пациентов с множественной миеломой

Васко Гракланов1, Веселин Попов2, Ралица Райчева3

1 Отделение клинической гематологии, УМБАЛ „Св. Георги", Медицинский университет – Пловдив, Пловдив, Болгария
2 Отделение лучевой терапии, Факультет медицины, УМБАЛ „Св. Георги", Медицинский университет – Пловдив, Пловдив, Болгария
3 Кафедра социальной медицины и общественного здравоохранения, Факультет общественного здравоохранения, Медицинский университет – Пловдив, Пловдив, Болгария

Адрес для корреспонденции: Васко Гракланов, Отделение клинической гематологии, УМБАЛ „Св. Георги", Медицинский университет – Пловдив, бул. „Васил Априлов” 15А, 4002 Пловдив, Болгария; E-mail: dr.grklanov@yahoo.com; Тел: +359 895 716 528

Дата получения: 20 января 2020 ♦ Дата приемки: 17 марта 2020 ♦ Дата публикации: 31 декабря 2020

Резюме

Цель: Исследовать уровни витамина D в сыворотке крови у впервые выявленных случаев пациентов с множественной миеломой (ММ).

Пациенты и методы: В этом исследовании мы измерили уровень витамина D в сыворотке у 37 пациентов (19 женщин, 18 мужчин), средний возраст которых составил 68 лет, которым был поставлен диагноз ММ в соответствии с критериями Международной рабочей группы по миеломе (International Myeloma Working Group (IMWG)). Иммуноанализы, использованные для количественного определения 25 (OH) – витамина D, представляли собой оригинальные наборы для иммунодиагностики ELISA, и измерение проводили до начала лечения.

Результаты: Уровни сыворотки ниже оптимального (<30 ng/ml) были установлены у 37 пациентов. Среднее значение витамина D составило 4.3 ± 6.5 mg/ml, максимальное измеренное значение – 24.7 mg/ml, что ниже нижнего предела референтного значения недостаточности.

Заключение: В этом исследовании мы обнаружили чрезвычайно низкий уровень витамина D в сыворотке крови у больши части пациентов с впервые диагностированной ММ.

Ключевые слова
химиотерапия, множественная миелома, лучевая терапия, витамин D